Principal eigenvalues for <i>k</i>-Hessian operators by maximum principle methods

نویسندگان

چکیده

For fully nonlinear $k$-Hessian operators on bounded strictly $(k-1)$-convex domains $\Omega$ of $\mathbb{R}^N$, a characterization the principal eigenvalue associated to $k$-convex and negative eigenfunction will be given as supremum over values spectral parameter for which admissible viscosity supersolutions obey minimum principle. The admissibility condition is phrased in terms natural closed convex cone $\Sigma_k \subset {\cal S}(N)$ an elliptic set sense Krylov [23] corresponds using functions constraints formulation subsolutions supersolutions. Moreover, constructed by iterative solution technique, exploits compactness property results from establishment global Hölder estimate unique solutions approximating equations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Principle and generalized principal eigenvalue for degenerate elliptic operators

We characterize the validity of the Maximum Principle in bounded domains for fully nonlinear degenerate elliptic operators in terms of the sign of a suitably defined generalized principal eigenvalue. Here, the maximum principle refers to the property of non-positivity of viscosity subsolutions of the Dirichlet problem. The new notion of generalized principal eigenvalue that we introduce here al...

متن کامل

The Spectral Function and Principal Eigenvalues for Schrdinger Operators

Let m 2 Lloc(R N ); 0 6= m+ in Kato’s class. We investigate the spectral function 7! s( + m)where s( + m) denotes the upper bound of the spectrum of the Schrödinger operator + m. In particular, we determine its derivative at 0. If m is sufficiently large, we show that there exists a unique 1 > 0 such that s( + 1m) = 0. Under suitable conditions on m it follows that 0 is an eigenvalue of + 1m wi...

متن کامل

Remarks on the Strong Maximum Principle for Nonlocal Operators

In this note, we study the existence of a strong maximum principle for the nonlocal operator

متن کامل

Spectral Methods and a Maximum Principle

Various spectral Chebyshev approximations of a model boundary layer problem for both a Helmholtz and an advection-diffusion operator are considered. It is assumed that simultaneously the boundary layer width tends to zero and the resolution power of the numerical method tends to infinity. The behavior of the spectral solutions in the frequency space and in the physical space is investigated. Er...

متن کامل

Uniform Boundedness Principle for operators on hypervector spaces

The aim of this paper is to prove the Uniform Boundedness Principle and Banach-Steinhaus Theorem for anti linear operators and hence strong linear operators on Banach hypervector spaces. Also we prove the continuity of the product operation in such spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics in engineering

سال: 2021

ISSN: ['2640-3501']

DOI: https://doi.org/10.3934/mine.2021021